If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-35y+60=0
a = 5; b = -35; c = +60;
Δ = b2-4ac
Δ = -352-4·5·60
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5}{2*5}=\frac{30}{10} =3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5}{2*5}=\frac{40}{10} =4 $
| 5v+12=8v | | 3x+2+72=110 | | -18g+15g-g+4=-4 | | 16+x=-4 | | 4u^2+40u+100=0 | | b-3b=9-5b+3 | | 6(-4n+4)-7(n+8)=30 | | 3-6v=-51 | | 19w-10w-2w=7 | | -10=v/2-8 | | 3y+y+3y+2y-7y=16 | | 14b-19b-17b-19b-11b=-20 | | 6w-8=16 | | 14—19b—17b—19b-11b=-20 | | 1x^2+14x+46=0 | | 2x+x+x=24 | | 2p+13p-7p-13p=-10 | | d3− 2= 2 | | 8f^2+24f+18=0 | | 2=4−2f | | 1x^2+6x+4=0 | | h4− 1= 2 | | (x-18)+(5x)=180 | | 9m-7m-m=20 | | 3-2(2-x)=5x+5 | | 9−2y=1 | | 6(-7x+32)=-38(18+8x) | | 2d−2=6 | | 12r−8−12= | | 7/5y=2=4 | | 40=2(4p+2)-4(5-5p) | | 74x-34=-36+74x |